Background: Although tissue engineering of articular cartilage is a promising approach for cartilage repair, it has been difficult to develop cartilaginous tissue in vitro that mimics the properties of native cartilage. Isolated chondrocytes grown in culture typically do not accumulate enough extracellular matrix, and the generated tissue possesses only a fraction of the mechanical properties of native cartilage. One potential explanation for this might be that the cells are grown in an environment that lacks the mechanical stimuli to which the chondrocytes are exposed in vivo. In this study, we compared the long-term effects of both dynamic compressive and shearing forces on cartilaginous tissue formation in vitro.
Methods: Bovine articular chondrocytes were grown on the surface of porous ceramic substrates and were maintained under static, free-swelling conditions for a period of four weeks. Cultures were then subjected to six minutes of mechanical stimulation every other day, in either compression or shear, for an additional four-week period.
Results: Cartilaginous tissues cultured in the presence of intermittent compression or shear were significantly thicker (p < 0.05) and had accumulated more extracellular matrix (p < 0.01) compared with the unstimulated controls. However, when normalized by the wet weight of the tissue, cultures stimulated in the presence of shearing forces contained more proteoglycans and collagen compared with compression-stimulated cultures. These cultures also displayed the largest increase in mechanical properties, with a threefold increase in equilibrium stress and a fivefold increase in equilibrium modulus.
Conclusions and Clinical Relevance: The results of this study demonstrate that a brief application of mechanical forces applied periodically over a long duration can improve the quality of cartilaginous tissue formed in vitro. However, the changes in tissue composition and mechanical properties were dependent on the specific mode of the applied mechanical forces, with shear stimulation eliciting the greater effect. This finding suggests that chondrocytes may respond differently to different modes of applied forces.