L’arthrose est l’une des maladies causant le plus de douleur et d’invalidité auprès de millions de personnes. En effet, selon l’Organisation des Nations unies, 130 millions de personnes dans le monde souffriront d’arthrose, dont 40 millions seront sévèrement invalides suite à la maladie. Connue comme la forme la plus commune d’arthrite, elle est caractérisée par la détérioration du cartilage articulaire, dont l’articulation la plus touchée est le genou. Malheureusement, l’arthrose du genou est souvent diagnostiquée lorsque des lésions sévères du cartilage articulaire sont présentes. À ce stade avancé de la maladie, les possibilités de traitements sont limitées. Néanmoins, puisque l’arthrose est une maladie qui se développe au fil des décennies, elle offre une large plage de temps pour en altérer son cours. Ainsi, la détection de l’état du cartilage articulaire à un stade préarthrosique permettra un diagnostic précoce des lésions articulaires pour entamer des traitements efficaces à un stade peu avancé de la maladie. Par conséquent, il y a toujours un besoin urgent de concevoir un dispositif médical permettant l’évaluation précoce et fiable de l’intégrité du cartilage articulaire.
Depuis plus d’une décennie, notre groupe de recherche s’est intéressé à cette problématique. Au fil des années, nos chercheurs ont étudié les propriétés électromécaniques du cartilage articulaire, nommés potentiels d’écoulement. Ce phénomène, qui consiste à des potentiels électriques générés suite au chargement du cartilage, a conduit à la conception d’un dispositif médical, l’Arthro-BST. Ce dispositif est une sonde arthroscopique munie d’un embout de 37 microélectrodes, permettant de mesurer ces potentiels d’écoulement. De nombreuses recherches ont démontré que les potentiels d’écoulement reflètent la structure, la fonction et la composition du cartilage ainsi que d’être sensible à la dégradation de ce dernier. Cette technique permet donc de diagnostiquer de façon précise les anomalies du cartilage et donc d’innover la caractérisation de ce tissu. Toutefois, l’Arthro-BST demeure un outil de mesure des potentiels d’écoulement générés lors de la compression du cartilage. L’objectif général de cette thèse est donc, de transformer le dispositif actuel en un outil précis de classification de la qualité du cartilage articulaire.
Tout d’abord, la première étude expérimentale visait à examiner la corrélation du paramètre quantitatif (QP) de l’Arthro-BST avec des techniques conventionnelles de caractérisation du cartilage humain. Bien que plusieurs études antérieures aient démontré la corrélation des potentiels d’écoulement avec les propriétés histologiques, biochimiques ou mécaniques du cartilage provenant d’articulations animales, il était essentiel d’étudier des tissus humains pour permettre une application clinique. Des mesures électromécaniques non destructives, à l’aide de l’ArthroBST, ont d’abord été effectuées sur des surfaces articulaires entières, provenant de genoux cadavériques humains. Ensuite, des biopsies ont été extraites de ces échantillons afin d’y effectuer des analyses histologiques, biochimiques et mécaniques. Les résultats de cette étude ont démontré que le paramètre électromécanique corrèle fortement avec les scores histologiques et propriétés mécaniques du cartilage humain alors qu’une faible corrélation avec le contenu en protéoglycanes et en eau du cartilage a été observée. La forte corrélation entre le paramètre électromécanique et les scores histologiques suggère que les potentiels d’écoulements reflètent exactement la qualité du tissu et l’intégrité du réseau de collagène. De plus, la forte corrélation des propriétés électromécaniques avec les propriétés mécaniques démontre que les potentiels d’écoulement représentent effectivement les propriétés fonctionnelles du cartilage.
Par la suite, la seconde étude expérimentale visait à examiner la capacité du dispositif électromécanique, ainsi qu’une technique d’indentation automatisée (développée par la compagnie Biomomentum), à caractériser des surfaces articulaires humaines entières rapidement et d’une manière non destructive afin de détecter la dégénération précoce du cartilage. En effet, on a étudié la capacité du dispositif électromécanique à détecter efficacement l’état du cartilage ainsi que d’examiner sa rapidité à fournir les données électromécaniques. Pour ce faire, les échantillons ont été analysés de manière macroscopique, électromécanique, mécanique et en mesurant l’épaisseur du cartilage cartographiquement. Subséquemment, des biopsies ont été extraites de régions macroscopiquement saines et dégénérées à des fins histologiques, biochimiques et de compression non confinée. L’analyse macroscopique a permis de définir trois régions distinctes sur chaque surface articulaire : la région I était macroscopiquement dégénérée, la région II était macroscopiquement normale mais adjacente à la région I et la région III était le reste de la surface macroscopiquement normale. Chaque biopsie extraite a été assignée à une des trois régions et des analyses statistiques ont permis de révéler la sensibilité de chacune de ces caractérisations. Les résultats ont démontré que seuls les paramètres électromécaniques, obtenues par l’Arthro-BST, et mécaniques, obtenues par la technique d’indentation automatisée, permettaient de distinguer efficacement entre les régions II et III, soit d’identifier l’altération précoce du cartilage articulaire. Ces techniques ont montré non seulement une sensibilité supérieure aux techniques conventionnelles (histologiques ou biochimiques), mais elles étaient aussi bien plus rapides. Ainsi, grâce à ces résultats prometteurs, ces deux techniques cartographiques pourraient être utilisées pour des études expérimentales telles que des études sur la réparation du cartilage, où des surfaces articulaires entières peuvent être évaluées rapidement et de manière non destructive ou pour une utilisation clinique en utilisant la sonde électromécanique.
Finalement, grâce aux résultats encourageants de ces deux premières études expérimentales, la transition du dispositif en un outil de classification de la qualité du cartilage articulaire était évidente. Tout d’abord, il est important de mentionner la volonté à traduire les propriétés électromécaniques obtenues par la sonde en un langage compréhensible par les orthopédistes. Parmi les systèmes de caractérisation macroscopique, le score de l’International Cartilage Repair Society (ICRS), nommé score ICRS, a été choisi. Ce score ICRS se fonde sur la profondeur des lésions du cartilage articulaire et est représenté par une échelle nominale de 0 à 4. Malgré la subjectivité de ce score, il est largement utilisé par les arthroscopistes. Ainsi, il a été convenu que le paramètre électromécanique sera converti en un score électromécanique analogue au score ICRS, soit représenté sur une échelle continue allant de 0 à 4. Pour ce faire, une base de données électromécaniques du cartilage sain a été développée afin d’établir une référence au paramètre électromécanique. Comme suite à cela, un examen approfondi des propriétés électromécaniques en fonction de la dégénération du cartilage (se fondant sur le score ICRS) a été fait sur 100 surfaces articulaires provenant de remplacement total de genoux. Ensuite, une analyse statistique de l’effet des caractéristiques propres au patient et de l’emplacement spécifique de la mesure sur les propriétés électromécaniques a été effectuée. Cette analyse a révélé que seul l’emplacement spécifique de la mesure a un effet sur les propriétés électromécaniques. Ainsi, il est critique de considérer cette information lors du développement du score électromécanique. Finalement, une vérification sur des surfaces articulaires, présentant des lésions à différents stades de dégénération, a montré que le score électromécanique permettait non seulement, de distinguer des lésions non détectables macroscopiquement, mais également de classifier plus précisément les lésions.
Pour conclure, cette nouvelle fonctionnalité de classification a été implémentée dans l’Arthro-BST. En dépit des limitations, telles que la longue période de conservation des surfaces articulaires cadavériques et l’incapacité à diagnostiquer de manière autonome du cartilage normal ou très dégénéré (amincissement du cartilage), ce projet permet de révolutionner la caractérisation du cartilage articulaire d’une manière objective et quantitative. Cet outil est essentiel pour prévenir, mieux traiter et caractériser efficacement le cartilage articulaire. De plus, un projet en cours et complémentaire à celui-ci a pour objectif général de rendre l’algorithme de classification complètement autonome en analysant les signaux bruts de potentiels d’écoulement du cartilage articulaire afin de différencier un cartilage visuellement normal ou anormalement mince.