A wide variety of physical properties, including sonic velocity, dimensional changes between wet and dried stages, anisotropy of the tissue properties, density, X-ray diffraction, differential microcalorimetry, dielectric constant, and composition (water, mineral, organic content) for the mineralized and demineralized tissue was used to develop a model for the superlattice structure of bone collagen. A mixed model is suggested where the collagen molecules are in register as in SLS type of aggregation within the microfibril, and the microfibrils are staggered in D unit steps according to the Hodge-Petruska scheme. A square packing model with 4 or more molecules per microfibril best fits the HP scheme with the effective molecular diameter of the wet collagen molecule, and allows for the regular array of axial gap filling microcrystallites of 5 nm or larger diameter. It is concluded that: 1. Macroscopic dimensional changes of adult bovine bone matrix closely match molecular dimensional changes of collagen superlattice. 2. Effective molecular diameter of dry collagen is 1.09 nm and that of wet bone collagen is 1.42 – 1.45 nm. 3. Water layer of the wet bone collagen molecule is 0.16 nm thick. 4. Water in the bone collagen molecule is distributed in 5 regimes much like in the tendon collagen molecule. 5. “Hidden” water, 0.10 g water per dry collagen of regimes I and II, is within the triple helix. 6. “External” water incorporated in the collagen molecule provides transition between the highly structured collagen molecule and the intermolecular medium. 7. Water incorporated in the mineralized bone collagen molecule is less than in demineralized bone matrix. 8. For adult bovine cortical bone, 25% by volume is water, 32% dry organic, 43% mineral; 28% by volume of the mineral is axial gap filling, 58% radial intrafibrillar, and 14% radial extrafibrillar.
Keywords:
Cortical bone; Bone collagen; Molecular packing