To examine the loads imposed on the structures of the neck by the performance of physical tasks, a biomechanical model of the neck was constructed. The model incorporated 14 bilateral pairs of muscle equivalents crossing the C4 level. A double linear programming optimization scheme that minimized maximum muscle contraction intensity and then vertebral compression force while equilibrating external loads was used to calculate the muscle contraction forces required and the motion segment reactions produced by task performance. To test model validity, 14 healthy adult subjects performed a series of isometric tasks requiring use of their neck muscles. These tasks included exertions in attempted flexion, extension, and left and right lateral bending and twisting. Subjects exerted maximum and submaximum voluntary efforts. During the performance, surface myoelectric activities were recorded at eight locations around the periphery of the neck at the C4 level. Calculated forces and measured myoelectric activities were then linearly correlated. Mean measured voluntary neck strengths in 10 male subjects were as large as 29.7 Nm. Four female subjects developed mean strengths that were approximately 60%–90% of those of the males. In both sexes, neck muscle strengths were approximately one order of magnitude lower than previously measured lumbar trunk strengths. Mean calculated neck muscle contraction forces ranged to 180 N. Mean calculated compression forces on the C4-5 motion segment ranged to 1164 N, lateral shear forces ranged to 125 N, and anteroposterior shear forces ranged to 135 N. Correlation coefficients between the calculated muscle forces and the measured myoelectric activities were as large as 0.85 in some muscles, but generally were smaller than this.
Keywords:
Neck biomechanics; Spine biomechanics; Biomechanical models; Myoelectric measurements.