Accidents between right turning trucks and straight riding cyclists often show massive consequences. Accident severity is much higher than in other accidents. The situation is critical especially due to the fact that, in spite of the six mirrors that are mandatory for ensuring a minimum field of sight for the truck drivers, cyclists in some situations cannot be seen or are not seen by the driver. Either the cyclist is overlooked or is in a blind spot area that results from the turning manoeuvre of the truck and its articulation if it is a truck trailer or truck semitrailer combination.
At present driver assistance systems are discussed that can support the driver in the turning situation by giving a warning when cyclists are riding parallel to the truck just before or in the turning manoeuvre. Such systems would generally bear a high potential to avoid accidents of right turning trucks and cyclists no matter if they ride on the road or on a parallel bicycle path. However, performance requirements for such turning assist systems or even test procedures do not exist yet. This paper describes the development of a testing method and requirements for turning assist systems for trucks.
The starting point of each development of test procedures is an analysis of accident data. A general study of accident figures determines the size of the problem. In-depth accident data is evaluated case by case in order to find out which are representative critical situations. These findings serve to determine characteristic parameters (e.g. boundary conditions, trajectories of truck and cyclist, speeds during the critical situation, impact points). Based on these parameters and technical feasibility by current sensor and actuator technology, representative test scenarios and pass/fail-criteria are defined.
The outcome of the study is an overview of the accident situation between right turning trucks and straight driving cyclists in Germany as well as a corresponding test procedure for driver assistance systems that at this first stage will be informing or warning the driver. This test procedure is meant to be the basis for an international discussion on introducing turning assist systems in vehicle regulations.