A distal radius fracture in middle-age and older adults is often considered a sentinel indicator of osteoporosis. Mechanical testing of cadaveric specimens is often used to quantify bone strength and develop insight for relating in-vivo measures to fracture force. Mechanical testing protocols using an intact forearm have been successful at replicating a Colles fracture, however, excised isolated radius protocols based on the intact forearm testing protocol have not been as successful. One protocol originally designed to replicate the physiological condition of a fall on an outstretched hand was reproduced in our laboratory, yet surprisingly the produced distal radius fracture patterns were not consistent among specimens nor was dorsal angulation of the distal fragment that is characteristic of a Colles fracture observed. The purpose of this study was to perform a mechanics-based analysis of the excised radius loading protocol in order to quantify the imposed and internal forces on the radius. An idealized beam model of the excised radius revealed that in the area of the distal radius where Colles fractures occur, 99.99% of the maximum strain on the bone outer surface was the result of pure compressive loading. This loading condition is in direct contrast to the accepted mechanics of a Colles fracture, which is characterized as a metaphyseal bending fracture with the volar cortex failing due to tensile stresses and the dorsal cortex exhibiting compression and comminution. The results suggest that additional research, particularly related to overcoming the difficulties of reliably supporting and applying a force to the distal end of the radius, is necessary for clinical fracture patterns to be reliably reproduced with an excised radius mechanical testing protocol.
Keywords:
Distal radius; Colles fracture; Osteoporosis; Mechanical testing; Excised radius