Cervical nerve roots are susceptible to compression injuries of various durations. The duration of an applied compression has been shown to contribute to both the onset of persistent pain and also the degree of spinal cellular and molecular responses related to nociception. This study investigated the relationship between peripherally-evoked activity in spinal cord neurons during a root compression and the resulting development of axonal damage. Electrically-evoked spikes were measured in the spinal cord as a function of time during and after (post-compression) a 15 minute compression of the C7 nerve root. Compression to the root significantly (p=0.035) reduced the number of spikes that were evoked over time relative to sham. The critical time for compression to maximally reduce evoked spikes was 6.6±3.0 minutes. A second study measured the postcompression evoked neuronal activity following compression applied for a shorter, sub-threshold time (three minutes). Ten minutes after compression was removed, the discharge rate remained significantly (p=0.018) less than baseline by 58±25% relative to sham after the 15 minute compression, but returned to within 3±33% of baseline after the three minute compression. Axonal damage was evident in the nerve root at day seven after nerve root compression only after a 15 minute compression. These studies demonstrate that even a transient mechanical insult to the nerve root is sufficient to induce sustained neuronal dysfunction and axonal pathology associated with pain, and results provide support that such minor neural tissue traumas can actually induce long-lasting functional deficits.
Keywords:
nerve root, compression, electrophysiology, axon, injury