1990 |
Duck FA. Mechanical properties of tissue. In: Physical Properties of Tissue: A Comprehensive Reference Book. Longon, England: Academic Press Limited; 1990:137-165. |
1993 |
Fung YC. Bone and cartilage. In: Biomechanics: Mechanical Properties of Living Tissues. 2nd ed. New York, NY: Springer-Verlag; 1993:500-544. |
1994 |
Linde F. Elastic and viscoelastic properties of trabecular bone by a compression testing approach. Dan Med Bull. April 1994;41(2):119-138. |
1983 |
Neil JL, Demos TC, Stone JL, Hayes WC. Tensile and compressive properties of vertebral trabecular bone. In: Transacation of the 29th Annual Meeting of the Orthopaedic Research Society. March 8-10, 1983; Anaheim, CA.344. |
1991 |
Weinans HH. Mechanically Induced Bone Adaptations Around Orthopaedic Implants [PhD thesis]. Nijmegen, The Netherlands: Katholieke Universiteit te Nijmegen; 1991. |
2000 |
Takahashi Y, Kikuchi Y, Konosu A, Ishikawa H. Development and validation of the finite element model for the human lower limb of pedestrians. Stapp Car Crash J. 2000;44:335-355. SAE 2000-01-SC22. |
2001 |
Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone. Annu Rev Biomed Eng. 2001;3:307-333. |
2009 |
Rincón-Kohli L, Zysset PK. Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol. June 2009;8(3):195-208. |
2019 |
Wood Z, Lynn L, Nguyen JT, Black MA, Patel M, Barak MM. Are we crying wolff? 3D printed replicas of trabecular bone structure demonstrate higher stiffness and strength during off-axis loading. Bone. October 2019;127:635-645. |
2008 |
Yoon Y-S, Oxland TR, Hodgson AJ, Duncan CP, Masri BA, Choi D. Mechanical aspects of degree of cement bonding and implant wedge effect. Clin Biomech (Bristol, Avon). November 2008;23(9):310-314. |
2004 |
Doblaré M, García JM, Gomez MJ. Modelling bone tissue fracture and healing: a review. Eng Fract Mech. September 2004;71(13-14):1809-1840. |
1985 |
Kaplan SJ, Hayes WC, Stone JL, Beaupré GS. Tensile strength of bovine trabecular bone. J Biomech. 1985;18(9):723-727. |
1987 |
Goldstein SA. The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech. 1987;20(11-12):1055-1061. |
1988 |
Rice JC, Cowin SC, Bowman JA. On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech. 1988;21(2):155-168. |
1991 |
Røhl L, Larsen E, Linde F, Odgaard A, Jørgensen J. Tensile and compressive properties of cancellous bone. J Biomech. 1991;24(12):1143-1149. |
1994 |
Keaveny TM, Guo XE, Wachtel EF, McMahon TA, Hayes WC. Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J Biomech. 1994;27(9):1127-1136. |
1994 |
Keaveny TM, Wachtel EF, Ford CM, Hayes WC. Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. J Biomech. 1994;27(9):1137-1146. |
1996 |
Ford CM, Keaveny TM. The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. J Biomech. 1996;29(10):1309-1317. |
1996 |
Zysset PK, Curnier A. A 3D damage model for trabecular bone based on fabric tensors. J Biomech. December 1996;29(12):1549-1558. |
2000 |
Keyak J, Rossi S. Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories. J Biomech. 2000;33(2):209-214. |
2000 |
Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech. 2000;33(12):1575-1583. |
2007 |
Kasra M, Grynpas MD. On shear properties of trabecular bone under torsional loading: effects of bone marrow and strain rate. J Biomech. 2007;40(13):2898-2903. |
2008 |
Nazarian A, Bauernschmitt M, Eberle C, Meier D, Müller R, Snyder BD. Design and validation of a testing system to assess torsional cancellous bone failure in conjunction with time-lapsed micro-computed tomographic imaging. J Biomech. December 5, 2008;41(16):3496-3501. |
2011 |
Brynk T, Hellmich C, Fritsch A, Zysset P, Eberhardsteiner J. Experimental poromechanics of trabecular bone strength: role of Terzaghi's effective stress and of tissue level stress fluctuations. J Biomech. 2011;44(3):501-508. |
2012 |
Sanyal A, Gupta A, Bayraktar HH, Kwon RY, Keaveny TM. Shear strength behavior of human trabecular bone. J Biomech. October 11, 2012;45(15):2513-2519. |
1985 |
Beaupre GS, Hayes WC. Finite element analysis of a three-dimensional open-celled model for trabecular bone. J Biomech Eng. August 1985;107(3):249-256. |
1991 |
Lotz JC, Cheal EJ, Hayes WC. Fracture prediction for the proximal femur using finite element models, I: linear analysis. J Biomech Eng. 1991;113(4):353-360. |
1993 |
Keaveny TM, Hayes WC. A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng. November 1993;115(4B):534-542. |
1999 |
Keaveny TM, Wachtel EF, Zadesky SP, Arramon YP. Application of the Tsai–Wu quadratic multiaxial failure criterion to bovine trabecular bone. J Biomech Eng. February 1999;121(1):99-107. |
1999 |
Fenech CM, Keaveny TM. A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone. J Biomech Eng. August 1999;121(4):414-422. |
2002 |
Niebur GL, Feldstein MJ, Keaveny TM. Biaxial failure behavior of bovine tibial trabecular bone. J Biomech Eng. December 2002;124(6):699-705. |
2004 |
Bayraktar HH, Gupta A, Kwon RY, Papadopoulos P, Keaveny TM. The modified super-ellipsoid yield criterion for human trabecular bone. J Biomech Eng. 2004;126(6):677-684. |
2000 |
Nafei A, Danielsen CC, Linde F, Hvid I. Properties of growing trabecular ovine bone, I: mechanical and physical properties. J Bone Joint Surg. August 2000;82B(6):910-920. |
1999 |
Ota T, Yamamoto I, Morita R. Fracture simulation of the femoral bone using the finite-element method: how a fracture initiates and proceeds. J Bone Min Metab. May 1999;17(2):108-112. |
2020 |
Lin X, Zhao J, Gao L, Zhang C, Gao H. Ratcheting-fatigue behavior of trabecular bone under cyclic tensile-compressive loading. J Mech Behav Biomed Mater. December 2020;112:104003. |
1985 |
Cheal EJ, Hayes WC, Lee CH, Snyder BD, Miller J. Stress analysis of a condylar knee tibial component: influence of metaphyseal shell properties and cement injection depth. J Orthop Res. 1985;3(4):424-434. |
1986 |
Fyhrie DP, Carter DR. A unifying principle relating stress to trabecular bone morphology. J Orthop Res. 1986;4(3):304-317. |
1991 |
Ciarelli MJ, Goldstein SA, Kuhn JL, Cody DD, Brown MB. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthop Res. May 1991;9(5):674-682. |
1997 |
Mitton D, Rumelhart C, Hans D, Meunier PJ. The effects of density and test conditions on measured compression and shear strength of cancellous bone from the lumbar vertebrae of ewes. Med Eng Phys. 1997;19(5):464-474. |
1999 |
Bruyère Garnier K, Dumas R, Rumelhart C, Arlot ME. Mechanical characterization in shear of human femoral cancellous bone: torsion and shear tests. Med Eng Phys. November 1999;21(9):641-649. |
2012 |
Edwards WB, Troy KL. Finite element prediction of surface strain and fracture strength at the distal radius. Med Eng Phys. April 2012;34(3):290-298. |
2003 |
Bredbenner TL. Damage Modeling of Vertebral Trabecular Bone [PhD thesis]. Cleveland, OH: Case Western Reserve University; January 2003. |
2005 |
Cook RB. Non-Invasively Assessed Skeletal Bone Status and Its Relationship to the Biomechanical Properties and Condition of Cancellous Bone [PhD thesis]. Cranfield, UK: Cranfield University; December 18, 2005. |
1994 |
Zysset P. A Constitutive Law for Trabecular Bone [PhD thesis]. Lausanne, Switzerland: École Polytechnique Fédérale de Lausanne; 1994. |
2008 |
Nazarian A. Relative Interaction of Material and Structure in Normal and Pathologic Bone [PhD thesis]. Zürich, Switzerland: ETH Zürich; 2008. |
1988 |
Lotz JC. Hip Fracture Risk Predictions by X-Ray Computed Tomography [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; August 1988. |
1996 |
Ford CM. Failure of the Human Proximal Femur: Material and Structural Perspectives [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; September 1996. |
2009 |
Meyer EG. Biomechanical Response of the Knee to Injury Level Forces in Sports Loading Scenarios [PhD thesis]. East Lansing, MI: Michigan State University; 2009. |
2009 |
Lievers WB. Effects of Geometric and Material Property Changes on the Apparent Elastic Properties of Cancellous Bone [PhD thesis]. Kingston, ON: Queen's University; April 2009. |
2011 |
Yao H. Microstructure-Based Characterization and Modeling of Trabecular Bone Deformation and Failure [PhD thesis]. Dallas, TX: Southern Methodist University. Tong W, advisor; August 3, 2011. |
1986 |
Fyhrie DP. Stress Analysis and Design of Proximal Femoral Prostheses [PhD thesis]. Stanford University; January 1986. |
1987 |
Turner CH. On the Relationship Between the Elastic Properties of Cancellous Bone and Its Structure [PhD thesis]. New Orleans, LA: Tulane University; 1987. |
2000 |
Niebur GL. A Computational Investigation of Multiaxial Failure in Trabecular Bone [PhD thesis]. Berkeley, CA: University of California; 2000. |
2008 |
Bevill GR. Micromechanical Modeling of Failure in Trabecular Bone [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2008. |
2013 |
Sanyal A. Bone Strength Multi-Axial Behavior: Volume Fraction, Anisotropy and Microarchitecture [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2013. |
2019 |
Sadoughi S. Micromechanics of Human Bone: Role of Architecture and Tissue Material Properties [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2019. |
1993 |
Goulet RW. The Quantification of the Structure and Mechanical Properties of Trabecular Bone [PhD thesis]. Ann Arbor, MI: University of Michigan; 1993. |
1992 |
Oxland TR. Burst Fractures of the Human Thoracolumbar Spine: A Biomechanical Investigation [PhD thesis]. New Haven, CT: Yale University; May 1992. |