A CT-based method for objectively assessing fracture severity was previously developed and validated to address poor reliability in existing subjective fracture classification systems. The method involved quantifying the energy involved in creating a fracture. However, clinical utility of the method was hindered by reliance upon an intact contralateral CT and lengthy analysis time (8–10 h). Significant methodological improvements detailed here enable the assessment of fracture severity in any joints and bones, while obviating the need for an intact contralateral CT scan. Analysis time was reduced to <2 h per case. Fracture energies computed using the new methods showed strong agreement (R2 = 0.95, p < 0.001) with prior results in analyzing twenty tibial pilon fractures. New metrics, articular fracture edge length and subchondral energy, were developed to better describe joint injuries by incorporating knowledge of preferential chondrocyte death along fracture edges. Based on two-year radiographic grading for these pilon fractures, fracture energy, articular fracture edge length, and subchondral energy were all significantly different (p < 0.01) between cases that did or did not develop post-traumatic osteoarthritis. These developments enable measurement of fracture severity in larger populations and in more clinically relevant timeframes with articular fractures involving a variety of joints and bones. This generalized assessment method offers opportunity to change the way severity is considered in fracture treatment algorithms. Studies involving larger cohorts are anticipated to yield insights into the impact of fracture severity on PTOA risk and serve as a foundation for evaluating new treatment strategies.
Keywords:
Fracture energy; Fracture severity; Post-traumatic OA