The power supply of a wireless electronic device is often conducted via an electric battery. An alternative solution to produce a continuous supply is to harvest energy from the vibrations of a mechanical structure. It has already been shown that the classical vibration energy harvester is effective only when the vibration excitation source has a narrowband frequential content. Vibration sources are often composed of a broad frequency spectrum so the classic energy harvester is inefficient. The main objective of this thesis is to propose and evaluate an energy harvester architecture that would lead to efficient energy harvesting from a vibration source of any frequential content. A review of the scientific literature allows to classify and prioritize the different strategies that have previously been proposed to harvest energy from the most common vibration sources. Based on this review, a harvester architecture composed of several piezoelectric harvesters coupled via electric impedances is then proposed. To predict the dimensionless power density of this architecture, its electromechanical model is developed and experimentally validated with a two-harvester prototype. This model is then introduced into an optimization procedure that maximizes a performance criterion based on the type of vibration excitation source, which is either stationary or non-stationary. The optimization results are then analyzed as parametric studies. For various vibration sources, these analyses establish the influence of every architectural parameter on its performance while developing a design tool for the proposed architecture. The first part of these studies considers the case where the architecture is excited by a harmonic vibration source, while the second part deals with stationary and non-stationary random sources. Finally, case studies are presented to demonstrate how to use the design tool. Although the results obtained in these cases are not general, it is shown that the use of the proposed architecture increases the power density or uniformizes it on a broader frequency spectrum. Indeed, when compared to the conventional harvester, a two-harvester architecture enables a performance gain of 51% for a harmonic vibration source, 184% for a low-pass source and 212% for a non-stationary source.