Increasingly, shoulder surgeries are performed using arthroscopic techniques, leading to reduced tissue damage and shorter patient recovery times. Orthopaedic training programs are responding to the increased demand for arthroscopic surgeries by incorporating arthroscopic skills into their residency curriculums. A need for accessible and effective training tools exists.
This thesis describes the design and development of a physical shoulder simulator for training basic arthroscopy skills such as triangulation, orientation, and navigation of the anatomy. The simulator can be used in either the lateral decubitus or beach chair orientation and accommodates wet or dry practice. Sensors embedded in the simulator provide a means to assess performance.
A study was conducted to determine the effectiveness of the simulator. Novice subjects improved their performance after practicing with the simulator. A survey completed by experts, recognized the simulator as a valuable tool for training novice surgeons in basic arthroscopic skills.