Isometric and isotonic contractile parameters of the soleus (SOL) and medial gastrocnemius (MG) muscles of seven adult cats were studied. In addition, architectural characteristics of six contralateral pairs of these ankle extensors were determined.
The in situ peak isometric tetanic tension developed by the MG at the Achilles tendon is nearly 5 times (9,846 vs 2,125 g) that of the SOL muscle. However, when differences between the MG and SOL in fiber length (2.01 vs 3.66 cm), muscle mass (9.80 vs. 3.31 g), and angle of pinnation (21.4 vs. 6.4°) are considered, the specific tensions of these muscles are similar (approximately 2.3 kg x cm⁻²).
When the effects of muscle architecture are eliminated, the nearly threefold greater maximum isotonic shortening velocity (Vmax) of sarcomeres of the MG (38.2 micron/s) relative to the SOL (13.4 micron/s) is presumably due to intrinsic differences in the biochemical properties of these muscle. However, the Vmax developed by the MG at the Achilles tendon (258.6 mm/s) during a shortening contraction is only 1.5 times that of the SOL (176.3 mm/s) due to the influence of these muscles' specific architectures.
Variations in geometrical characteristics of the SOL and MG are consonant with the relative amounts of participation of these muscles during posture, locomotion, and jumping. Posture requires the development of low forces for prolonged periods for which the SOL seems best suited both architecturally and physiologically. The MG, relatively inactive during quiet standing, becomes responsible for a greater percentage of tension and shortening speed during plantar flexion (E₃) as gait speeds increase, which is consistent with this muscle's greater tension- and velocity-generating capacity.
At high speeds of locomotion (3.0 m/s) and jumping, the shortening velocities developed at the end of E₃ (approximately 20-40 ms before paw off) exceed Vmax of the SOL. Consequently, the SOL, although electrically active, cannot contribute to the tensions required to generate the shortening velocities dictated by these movements. 6. These data demonstrate the influence of the differing geometries of the SOL and MG on the roles of these muscles in generating forces at varying velocities, as demanded by the dynamics of the movement.