Ce mémoire présente deux projets de développement portant sur des algorithmes et des outils logiciels offrant des solutions pratiques à des problématiques courantes rencontrées en réadaptation.
Le premier développement présenté est un algorithme de correspondance de séquence qui s’intègre à des interfaces de contrôle couramment utilisées en pratique. L’implémentation de cet algorithme offre une solution flexible pouvant s’adapter à n’importe quel utilisateur de technologies d’assistances. Le contrôle de tels appareils représente un défi de taille puisqu’ils ont, la plupart du temps, une dimensionnalité élevée (c-à-d. plusieurs degrés de liberté, modes ou commandes) et sont maniés à l’aide d’interfaces basées sur de capteurs de faible dimensionnalité offrant donc très peu de commandes physiques distinctes pour l’utilisateur. L’algorithme proposé se base donc sur de la reconnaissance de courts signaux temporels ayant la possibilité d’être agencés en séquences. L’éventail de combinaisons possibles augmente ainsi la dimensionnalité de l’interface. Deux applications de l’algorithme sont développées et testées. La première avec une interface de contrôle par le souffle pour un bras robotisé et la seconde pour une interface de gestes de la main pour le contrôle du clavier-souris d’un ordinateur.
Le second développement présenté dans ce mémoire porte plutôt sur la collecte et l’analyse de données en réadaptation. Que ce soit en milieux cliniques, au laboratoires ou au domicile, nombreuses sont les situations où l’on souhaite récolter des données. La solution pour cette problématique se présente sous la forme d’un écosystème d’applications connectées incluant serveur et applications web, mobiles et embarquée. Ces outils logiciels sont développés sur mesure et offrent un procédé unique, peu coûteux, léger et rapide pour la collecte, la visualisation et la récupération de données. Ce manuscrit détaille une première version en décrivant l’architecture employée, les technologies utilisées et les raisons qui ont mené à ces choix tout en guidant les futures itérations.
This Master’s thesis presents two development projects about algorithms and software tools providing practical solutions to commonly faced situations in rehabilitation context.
The first project is the development of a sequence matching algorithm that can be integrated to the most commonly used control interfaces. The implementation of this algorithm provides a flexible solution that can be adapted to any assistive technology user. The control of such devices represents a challenge since their dimensionality is high (i.e., many degrees of freedom, modes, commands) and they are controlled with interfaces based on low-dimensionality sensors. Thus, the number of actual physical commands that the user can perform is low. The proposed algorithm is based on short time signals that can be organized into sequences. The multiple possible combinations then contribute to increasing the dimensionality of the interface. Two applications of the algorithm have been developed and tested. The first is a sip-and-puff control interface for a robotic assistive arm and the second is a hand gesture interface for the control of a computer’s mouse and keyboard.
The second project presented in this document addresses the issue of collecting and analyzing data. In a rehabilitation’s clinical or laboratory environment, or at home, there are many situations that require gathering data. The proposed solution to this issue is a connected applications ecosystem that includes a web server and mobile, web and embedded applications. This custom-made software offers a unique, inexpensive, lightweight and fast workflow to visualize and retrieve data. The following document describes a first version by elaborating on the architecture, the technologies used, the reasons for those choices, and guide the next iterations.