Biominerals and biomaterials are part of our daily lives, from our skeleton and teeth to coral reefs and carbon-capturing single-cell organisms in the oceans, to engineered ceramics comprising our toothpaste and bone replacements. Many biominerals are hierarchically structured with remarkable material properties that arise from their unique combination of organic and inorganic components. Such structural hierarchy is often formed through a process of biomineralization. However, many fundamental questions remain regarding mineralization events in bones or teeth, and near biomaterials, partly due to the challenges in characterizing three-dimensional (3D) structure and chemical composition simultaneously at the nanometer scale. Atom probe tomography (APT) is a 3D characterization technique that combines both sub-nanometer spatial resolution and compositional sensitivity down to tens of parts per million. While APT is well-established in application to conventional engineering materials, recent years have seen its expansion into biomineralization research. Here, we focus our review on APT applications to biominerals, biomaterials and biointerfaces, providing a high-level summary of findings, as well as a primer on theory and best practices specific to the biomineralization community. We show that APT is a promising characterization tool, where its unique ability to quantify 3D chemical composition is not only complementary to other microscopy techniques but could become an integral part of biomaterial research. With the emerging trends of correlative and cryogenic workflow, notwithstanding the challenges outlined herein, APT has the potential to improve understanding of a broader range of biomaterials, while deriving innovative perspectives on clinical applications and strategies for biomaterial design.
Keywords:
Atom probe tomography; Biomineralization; Biomineral; Biomaterials; Biointerface; Bone