Quasi-stiffness describes the intersegmental joint moment–angle relationship throughout the progression of a task. Previous work has explored sagittal-plane ankle quasi-stiffness and its application for the development of powered lower-limb assistive devices. However, frontal-plane quasi-stiffness remains largely unexplored but has important implications for the development of exoskeletons since clinical populations often walk with wider steps and rely on frontal-plane balance recovery strategies at the hip and ankle. This study aimed to characterize frontal-plane hip and ankle quasi-stiffness during walking and determine how step width affects quasi-stiffness in both the frontal and sagittal planes. Kinematic and kinetic data were collected and quasi-stiffness values computed for healthy young adults (n = 15) during treadmill walking across a range of step widths. We identified specific subphases of the gait cycle that exhibit linear and quadratic frontal-plane quasi-stiffness approximations for the hip and ankle, respectively. In addition, we found that at wider step widths, sagittal-plane ankle quasi-stiffness increased during early stance (∼12–35% gait cycle), sagittal-plane hip quasi-stiffness decreased in late stance (∼40–55% gait cycle) and frontal-plane hip quasi-stiffness decreased during terminal stance (∼48–65% gait cycle). These results provide a framework for further exploration of frontal-plane quasi-stiffness, lend insight into how quasi-stiffness may relate to balance control at various step widths, and motivate the development of stiffness-modulating assistive devices to improve balance related outcomes.
Keywords:
Walking; Gait; Lower limb; Quasi-stiffness; Step width; Biomechanics