Individuals with neuromuscular deficits often walk with wider step widths compared to healthy adults. Wider steps have been linked to a higher destabilizing frontal-plane external moment and greater range of frontal-plane whole-body angular momentum (HR), which is an indicator of decreased balance control. The purpose of this study was to experimentally determine 1) how step width alters balance control during steady-state walking, and 2) if step width changes the balance response strategies following mediolateral surface perturbations in healthy adults.
Fifteen healthy young adults (7 male, age: 25 ± 4 years) walked on an instrumented treadmill at narrow, self-selected, wide and extra-wide step widths. During perturbed trials, the treadmill provided random mediolateral surface translations to each foot midway through single-leg-stance. Muscle electromyography, biomechanical measures (HR, frontal-plane external moment and joint moments) and deviations (differences in these measures between the perturbed and unperturbed walking trials) were compared across step widths.
During steady state walking, wider steps were associated with decreased balance control. Increasing step widths were also associated with increased gluteus medius activity and reduced hip abduction and ankle inversion moments, which suggests healthy subjects rely more on a lateral ankle strategy to maintain balance at increasing step widths. There was no change in the plantarflexion moment. During perturbed walking, lateral, but not medial, surface translations adversely affected balance control. Further, wider steps did not change the balance response strategies following the perturbations, which suggests healthy individuals have the capacity to respond similarly to the perturbations at different step widths.