Wearable sensors may allow research to move outside of controlled laboratory settings to be able to collect real-world data in clinical populations, such as older adults with osteoarthritis. However, the reliability of these sensors must be established across multiple out-of-lab data collections. Nine older adults with symptomatic knee arthritis wore wearable inertial sensors on their proximal tibias during an outdoor 6-minute walk test outside of a controlled laboratory setting as part of a pilot study. Reliability of the underlying waveforms, discrete peak outcomes, and spatiotemporal outcomes were assessed over four separate data collections, each approximately 1 week apart. Reliability at a different number of included strides was also assessed at 10, 20, 50, and 100 strides. The underlying waveforms and discrete peak outcome measures had good-to-excellent reliability for all axes, with lower reliability in frontal plane angular velocity axis. Spatiotemporal outcomes demonstrated excellent reliability. The inclusion of additional strides had little to no effect on reliability in most axes, but the confidence intervals generally became smaller across all axes. However, there was improvement in axes with lower (i.e., good) reliability. These data were collected in an out-of-lab setting, and the results are generally consistent with previous in-lab data collections, likely due to its semi-controlled nature. Additional out-of-laboratory research is required to investigate if these trends continue during truly free-living collections. This study provides support for increasing research conducted in out-of-lab data collections, as demonstrated by the good-to-excellent reliability of all axes.
Keywords:
Wearable sensors; Gait; Osteoarthritis; Reliability; Out-of-lab collection