A method is presented for determining the angular momentum of the human body about its mass centre for general three-dimensional movements. The body is modelled as an 11 segment link system with 17 rotational degrees of freedom and the angular momentum of the body is derived as a sum of 12 terms, each of which is a vector function of just one angular velocity. This partitioning of the angular momentum vector gives the contribution due to the relative segmental movement at each joint rather than the usual contribution of each segment. A method of normalizing the angular momentum is introduced to enable the comparison of rotational movements which have different flight times and are performed by athletes with differing inertia parameters. Angular momentum estimates were calculated during the flight phases of nine twisting somersaults performed on trampoline. Errors in film digitization made large contributions to the angular momentum error estimates. For individual angular momentum estimates the relative error is estimated to be about 10% whereas for mean angular momentum estimates the relative error is estimated to be about 1%.