Although patellofemoral pain (PFP) is recognized as being one of the most common disorders of the lower extremity, treatment guidelines and underlying rationales remain vague and controversial. The premise behind most treatment approaches is that PFP is the result of abnormal patellar tracking and/or patellar malalignment. Given as such, interventions typically focus on the joint itself and have traditionally included strengthening the vastus medialis oblique, taping, bracing, soft tissue mobilization, and patellar mobilization. More recently, it has been recognized that the patellofemoral joint and, therefore, PFP may be influenced by the interaction of the segments and joints of the lower extremity. In particular, abnormal motion of the tibia and femur in the transverse and frontal planes may have an effect on patellofemoral joint mechanics. With this in mind, interventions aimed at controlling hip and pelvic motion (proximal stability) and ankle/foot motion (distal stability) may be warranted and should be considered when treating persons with patellofemoral joint dysfunction. The purpose of this paper is to provide a biomechanical overview of how altered lower-extremity mechanics may influence the patellofemoral joint. By addressing these factors, better long-term treatment success and prevention may be achieved.
Keywords:
knee; patella; patellofemoral; pain