Over the past fifty years there has been considerable development in motion analysis systems and in computer simulation modelling of sports movements while the relevance and importance of functional variability of sports technique has become increasingly recognised. Technical developments for experimental work have led to increased, and still increasing, subject numbers. Increased subjects per study give better statistical power, the ability to utilise different data analyses, and thus the determination of more subtle and nuanced factors. The overall number of studies has also increased massively. Most actions in sport can, and have, been studied at some level with even the more challenging ones, such as player on player impacts, having some developing research. Computer simulation models of sports movements have ranged from simple (one or two segment) models to very complex musculoskeletal models and have used parameters ranging from the generic to individual-specific. Simple models have given insights into the key mechanics of movement while individual-specific model optimisations have been used to improve athlete performance. Our depth of understanding of the mechanics of sports techniques has increased across a wide range of sports. In the future there is likely to be more development and use of markerless motion capture, individual-specific model parameters, and more consideration of motor control aspects in the analysis of sports technique.
Keywords:
Invited review; Performance-related; Sports biomechanics