Altered mechanics are believed to initiate osteoarthritis in hips with acetabular dysplasia. Periacetabular osteotomy (PAO) is the preferred surgical treatment; however, it is unknown if the procedure normalizes joint anatomy and mechanics. Changes in three-dimensional (3D) morphology and chondrolabral mechanics were quantified after PAO. Finite element (FE) models demonstrated that PAO improved the distribution of coverage, reduced stress, increased congruity, and prevented cartilage thinning. However, changes in mechanics were not consistent. In fact, one patient exhibited increased stress after surgery, which was believed to be a result of over-correction. Therefore, methods to integrate morphologic and biomechanical analysis with clinical care could standardize outcomes of PAO.
FE simulations are time-intensive and require significant computing resources. Therefore, the second aim was to implement an efficient method to estimate mechanics. An enhanced discrete element analysis (DEA) model of the hip that accurately incorporated cartilage geometry and efficiently calculated stress was developed and analyzed. Although DEA model estimates predicted elevated magnitudes of contact stress, the distribution corresponded well with FE models. As a computationally efficient platform, DEA could assist in diagnosis and surgical planning.
Imaging is a precursor to analyzing morphology and biomechanics. Ideally, an imaging protocol would visualize bone and soft-tissue at high resolution without ionizing radiation. Magnetic resonance imaging (MRI) with 3D dual-echo-steady-state (DESS) is a promising sequence to image the hip noninvasively, but its accuracy has not been quantified. Therefore, the final aim was to implement and validate the use of 3D DESS MRI in the hip. Using direct measurements of cartilage thickness as the standard, 3D DESS MRI imaged cartilage to ~0.5 mm of the physical measurements with 95% confidence, which is comparable to the most accurate hip imaging protocol presented to date.
In summary, this dissertation provided unique insights into the morphologic and biomechanical features following PAO. In the future, DEA could be combined with 3D DESS MRI to efficiently analyze contact stress distributions. These methods could be incorporated into preoperative planning software, where the algorithm would predict the optimal relocation of the acetabulum to maximize femoral head coverage while minimizing contact stress, and thereby improve long-term outcomes of PAO.