The study of fatigue crack growth for damage tolerance analysis is of interest to the aerospace industry to enable accurate and economical estimates of a component’s life before replacement or repairs are required. Many numerical analyses used for damage tolerance employ a series of assumptions that enable results to be generated quickly at the cost of accuracy. With advances in computational power and numerical analyses some of these assumptions, such as crack shape, are not necessary and not including the assumptions in the analysis result in more accurate fatigue predictions. This thesis presents the development and application of an automated crack growth program, called the ACGP, to predict crack growth and fatigue life in non-standard geometries, where the shape of the crack front is determined iteratively.
The ACGP was developed using a simulated growth technique and employed finite element analysis and Paris growth equations to predict fatigue crack growth of cracks in thin plates. The ACGP was validated for predictions of fatigue life and crack growth that were found to agree with experimental and accepted numerical results. The predictions were also compared to results generated using the fatigue crack growth program AFGROW and differences and similarities are presented. Models were also created to predict crack growth emanating from countersunk fastener holes in thin plates. Assessment and comparison of the results are presented, identifying the growth pattern, critical initial location and the effect of geometric properties on the fatigue life.