In mammals, hematopoiesis migrates to the bone marrow during embryogenesis coincident with the appearance of mineralized bone, where hematopoietic stem cells (HSCs) and their progeny are maintained by the surrounding microenvironment or niche, and sustain the entirety of the hematopoietic system. Genetic manipulation of niche factors and advances in cell lineage tracing techniques have implicated cells of both hematopoietic and nonhematopoietic origin as important regulators of hematopoiesis in health and disease. Among them, cells of the osteoblast lineage, from stromal skeletal stem cells to matrix-embedded osteocytes, are vital niche residents with varying capacities for hematopoietic support depending on stage of differentiation. Here, we review populations of osteoblasts at differing stages of differentiation and summarize the current understanding of the role of the osteoblast lineage in supporting hematopoiesis.
Keywords:
OSTEOBLASTS; HEMATOPOIESIS; BONE MARROW STROMAL CELLS; HEMATOPOIETIC NICHE; BONE MARROW MICROENVIRONMENT