Surface myoelectric signals often appear to carry more information than what is resolved in root mean square analysis of the progress curves or in its power spectrum. Time-frequency analysis of myoelectric signals has not yet led to satisfactory results in respect of separating simultaneous events in time and frequency. In this study a time-frequency analysis of the intensities in time series was developed. This intensity analysis uses a filter bank of non-linearly scaled wavelets with specified time-resolution to extract time-frequency aspects of the signal. Special procedures were developed to calculate intensity in such a way as to approximate the power of the signal in time. Applied to an EMG signal the intensity analysis was called a functional EMG analysis. The method resolves events within the EMG signal. The time when the events occur and their intensity and frequency distribution are well resolved in the intensity patterns extracted from the EMG signal. Averaging intensity patterns from multiple experiments resolve repeatable functional aspects of muscle activation. Various properties of the functional EMG analysis were shown and discussed using model EMG data and real EMG data.
Keywords:
Electromyography; EMG; Spectral analysis; Muscle fiber; Filter; Time-resolution