The skeleton is a common site for the establishment of distant metastases. Once cancers occupy bone, the prognosis is poor as disease recurrence and visceral spread is imminent. Understanding the pathways and cellular interactions, which regulate tumour cell seeding, dormancy and growth in bone, is pertinent to improving outcomes for patients with advanced cancers. Advances in imaging techniques have facilitated the development of the concept that the behavior of bone marrow resident cells dictates the fate of tumour cells upon arrival in bone. This review summarises recent findings achieved through intravital imaging. It highlights the importance of developing both longitudinal static and acute dynamic data to develop our understanding of tumour cell engraftment, dormancy, activation and the subsequent establishment of metastases. We also describe how imaging techniques have developed our knowledge of the elements that make up the complex bone microenvironment which tumour cells interact with to survive and grow. We also discuss how through combining these imaging insights with single cell RNA sequencing data, we are entering a new era of research which has the power to define the cell-cell interactions which control tumour cell growth in bone.
Keywords:
Intravital imaging; Bone cancer; Tumour dormancy; Bone tumour cell interactions; Single cell RNA sequencing; Bone metastasis; Imaging tumour cells; Imaging bone cells