Decreased gait symmetry has been correlated with an increased fall risk, abnormal joint loading and decreased functional outcomes. Therefore, symmetry is focused on in the rehabilitation of many patient populations. Currently, load based symmetry is collected using expensive and immobile devices that are not clinically accessible, but there is a clinical need for an objective measure of loading symmetry during daily tasks like walking. Therefore, the purpose of this dissertation was to 1) assess the validity and reliability of the loadsol® to capture ground reaction force data, 2) use the loadsol® to determine the differences in symmetry between adults with a TKA and their healthy peers and 3) explore the potential of a commercially available biofeedback system to acutely improve gait symmetry in adults. The results of this work indicate that the loadsol® is a valid and reliable method of collecting loading measures during walking in both young and older adults. TKA patients who are 12-24 months post-TKA have lower symmetry in the weight acceptance peak force, propulsive peak force and impulse when compared to their healthy peers. Finally, a case study with four asymmetric adults demonstrated that a 10-minute biofeedback intervention with the loadsol® resulted in an acute improvement in symmetry. Future work is needed to determine the potential of this intervention to improve symmetry in patient populations and to determine whether the acute response is retained following the completion of the intervention.
Keywords:
Gait analysis; symmetry; biofeedback; gait training; total knee arthroplasty