Image segmentation is an important issue in many industrial processes, with high potential to enhance the manufacturing process derived from raw material imaging. For example, metal phases contained in microstructures yield information on the physical properties of the steel. Existing prior literature has been devoted to develop specific computer vision techniques able to tackle a single problem involving a particular type of metallographic image. However, the field lacks a comprehensive tutorial on the different types of techniques, methodologies, their generalizations and the algorithms that can be applied in each scenario. This paper aims to fill this gap. First, the typologies of computer vision techniques to perform the segmentation of metallographic images are reviewed and categorized in a taxonomy. Second, the potential utilization of pixel similarity is discussed by introducing novel deep learning-based ensemble techniques that exploit this information. Third, a thorough comparison of the reviewed techniques is carried out in two openly available real-world datasets, one of them being a newly published dataset directly provided by ArcelorMittal, which opens up the discussion on the strengths and weaknesses of each technique and the appropriate application framework for each one. Finally, the open challenges in the topic are discussed, aiming to provide guidance in future research to cover the existing gaps.
Keywords:
Image segmentation; Metallography; Machine learning; Deep learning; Microscopy images; Computer vision