Background: Standard of care metabolic bone disease assessment relies on changes to bone quantity, which can only be detected after structural changes occur.
Purpose: To investigate the usefulness of Bone Metabolism Score (BMS), derived from fluorine 18 labeled sodium fluoride (18F-NaF) PET/CT imaging as a biomarker of localized metabolic changes at the femoral neck.
Methods: In this retrospective study, 139 participants (68 females and 71 males, ages 21–75 years) that had undergone 18F-NaF PET/CT were included. BMS was calculated as the ratio of standard uptake value (SUV) in the bone region to that of the total region. Correlations and linear regressions of BMS with age, CT-derived bone mineral density (BMD), body mass index (BMI), height, and weight were conducted. Differences in BMS between women younger and older than the age of 50 years were assessed. Inter- and intra-operator reproducibility was evaluated by coefficient of variation (CV) and intra-class correlation coefficient (ICC).
Results: Among females, age was negatively correlated with left and right whole BMS (5.61% and 4.90% drop in BMS per decade of life) and left and right cortical BMS (10.50% and 10.09% drop in BMS per decade of life). BMS of women older than 50 years was lower than BMS of women younger than 50 years (P < .0001). Among males, age was negatively correlated with left and right whole BMS (4.29% and 4.25% drop in BMS per decade of life) and left and right cortical BMS (9.13% and 10.30% drop in BMS per decade of life). BMD was positively correlated with whole (r = 0.80, P < .0001) and cortical (r = 0.92, P < .0001) BMS.
Conclusions: BMS could provide functional insight regarding bone metabolism in the femoral neck to complement bone health status assessed through conventional structural imaging. The methodology described herein could be potentially useful for assessing hip fracture risk in individuals when BMD tests provide borderline determination of bone disease.