Per definition, SAE Level 2 (L2) Systems perform both the lateral and longitudinal vehicle motion control with the expectation that the driver completes the Object and Event Detection and Response (OEDR). Since every system performs also parts of the OEDR itself and this amount of OEDR also varies between different L2 systems depending on the intended system design, it cannot be taken for granted that drivers automatically understand their roles and responsibilities in interaction with the system. Especially highly reliable L2 systems performing a greater amount of OEDR while at the same time requiring only little driver input over time can make it difficult for drivers to correctly identify their role and responsibility.
Until now, neither application-oriented assessment methods nor design guidelines for OEDR related system design features taking safety of human-machine-interaction into account are available. The objective is therefore to deliver a standardized tool for the assessment of human-machine-interaction-related safety of vehicles with L2 systems currently available on the market. To evaluate the impact of different system design aspects on safety of human-machine-interaction and also to be able to differentiate between system designs, a holistic, standardized and application-oriented assessment procedure is proposed. The novel tablet-based assessment tool focuses not only on available standards and guidelines but measures also concrete user behaviour and user understanding in interaction with the L2 systems. The aim is to gain further insights which cannot be measured directly by simple checklist instruments.
For preparation, based on international standards, literature reviews and expert consultations, a first checklist- based expert-evaluation for currently available vehicles with L2 systems was developed. These assessments are focusing on different sources of user information (e.g. user manual), human-machine-interface design as well as the prevention of unintended use by different driver monitoring techniques. The checklist-tool was developed in cooperation with experts of different EuroNCAP test laboratories and validated in a common expert workshop to gain high level of standardization and agreement. However, to assess safety of human-machine-interaction holistically beyond these rather explicit forms of information design criteria, also implicit forms of driver- vehicle-communication via vehicle dynamics, functional behavior or reliability play an important role and should be taken into account. Therefore, the main and novel methodological aim is to consider also interaction related processes regarding user ́s understanding of roles and responsibilities when applying automated driving functions as well as user ́s awareness of automation modes or traffic situations in the modular tablet-based assessment tool.