It is currently assumed that the same frequency weightings, derived from studies of vibration discomfort, can be used to evaluate the severity of vibration at all vibration magnitudes from the threshold of vibration perception to the vibration magnitudes associated with risks to health. This experimental study determined equivalent comfort contours for the wholebody vibration of seated subjects over the frequency range 2–315 Hz in each of the three orthogonal axes (fore-and-aft, lateral and vertical). The contours were determined at vibration magnitudes from the threshold of perception to levels associated with severe discomfort and risks to health.
At frequencies greater than 10 Hz, thresholds for the perception of vertical vibration were lower than thresholds for foreand-aft and lateral vibration. At frequencies less than 4 Hz, thresholds for vertical vibration were higher than thresholds for fore-and-aft and lateral vibration. The rate of growth of sensation with increasing vibration magnitude was highly dependent on the frequency and axis of vibration. Consequently, the shapes of the equivalent comfort contours depended on vibration magnitude. At medium and high vibration magnitudes, the equivalent comfort contours were reasonably consistent with the frequency weightings for vibration discomfort in current standards (i.e. Wb and Wd). At low vibration magnitudes, the contours indicate that relative to lower frequencies the standards underestimate sensitivity at frequencies greater than about 30 Hz. The results imply that no single linear frequency weighting can provide accurate predictions of discomfort caused by a wide range of magnitudes of whole-body vibration.