While the majority of experimental cervical spine biomechanics research has been conducted using slowly applied forces and/or moments, or dynamically applied forces with contact, little research has been performed to delineate the biomechanics of the human neck under inertial “noncontact” type forces. This study was designed to develop a comprehensive methodology to induce these loads. A minisled pendulum experimental setup was designed to test specimens (such as human cadaver neck) at subfailure or failure levels under different loading modalities including flexion, extension, and lateral bending. The system allows acceleration/deceleration input with varying wave form shapes. The test setup dynamically records the input and output strength information such as forces, accelerations, moments, and angular velocities; it also has the flexibility to obtain the temporal overall and local kinematic data of the cervical spine components at every vertebral level. These data will permit a complete biomechanical structural analysis. In this paper, the feasibility of the methodology is demonstrated by subjecting a human cadaver head-neck complex with intact musculature and skin under inertial flexion and extension whiplash loading at two velocities.