Whole-body vibrations (WBV) were measured at the seatpan of load-haul-dump (LHD) vehicles of 3.5-, 5-, 6- and 8-yard capacity at two underground mines. Twenty-two sets of measurements were made involving 11 vehicles, 8 operators and 4 work locations. In each set frequency-weighted rms and peak accelerations were measured in the x, y and z directions, as defined by the ISO (1982), during mucking, driving full, dumping and driving empty. Significant differences in rms accelerations were found between vehicle sizes and between operational tasks (≤0.05). The smallest (3.5 yd) vehicle produced the greatest accelerations in the x and z directions. Accelerations in the x and z directions were also greater when driving full and empty than when mucking and dumping. The highest frequency-weighted rms accelerations of 2.0 to 2.8 m/s-2 were recorded in the z (longitudinal) direction. Peak accelerations ranged from 1.2 to ≥20 m/s², resulting in crest-factor ratios in excess of six. The exposure periods for each task were used to calculate mean daily acceleration exposures (m/s²). Of the 22 sets of measurements, 20 exceeded the International Standards Organization (ISO) six-hour daily exposure limit in the z direction.of acceleration, and 9 exceeded the six-hour daily exposure limits in all three directions. Acceleration exposure ratios calculated using resultant acceleration vectors as described in ISO (1982), were found to exceed the ISO exposure limit for health or safety in all 22 cases. One-third octave band frequency analysis of the weighted signals indicated that the dominant frequencies were usually 1.6 to 3.15 Hz, except when the vehicles were idling and higher frequencies predominated.
Keywords:
whole-body vibration; acceleration; mining; vehicle operators