wbldb
home
|
authors
|
theses
Korhonen, Rami K.
1
;
Saarakkala, Simo
2,3
Biomechanics and modeling of skeletal soft tissues
Theoretical Biomechanics
Affiliations
1
Department of Applied Physics,
University of Eastern Finland
, Kuopio
2
Department of Medical Technology,
University of Oulu
, Oulu
3
Department of Diagnostic Radiology,
University of Oulu
and Oulu University Hospital, Oulu, Finland
Links
DOI:
10.5772/19975
Cited Works (25)
Year
Entry
2000
Li LP, Buschmann MD, Shirazi-Adl A. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression.
J Biomech
. December 2000;33(12):1533-1541.
2000
Guilak F, Mow VC. The mechanical environment of the chondrocyte: a biphasic finite element model of cell–matrix interactions in articular cartilage.
J Biomech
. December 2000;33(12):1663-1673.
2001
Chen AC, Bae WC, Schinagl RM, Sah RL. Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression.
J Biomech
. January 2001;34(1):1-12.
1992
Spilker RL, Donzelli PS, Mow VC. A transversely isotropic biphasic finite element model of the meniscus.
J Biomech
. September 1992;25(9):1027-1045.
1997
Jurvelin JS, Buschmann MD, Hunziker EB. Optical and mechanical determination of Poisson's ratio of adult bovine humeral articular cartilage.
J Biomech
. March 1997;30(3):235-241.
1997
Thornton GM, Oliynyk A, Frank CB, Shrive NG. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament.
J Orthop Res
. 1997;15(5):652-656.
2002
Elliott DM, Narmoneva DA, Setton LA. Direct measurement of the Poisson’s ratio of human patella cartilage in tension.
J Biomech Eng
. April 2002;124(2):223-228.
1999
Li LP, Soulhat J, Buschmann MD, Shirazi-Adl A. Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model.
Clin Biomech
(Bristol, Avon). November 1999;14(9):673-682.
1991
Lai WM, Hou JS, Mow VC. A triphasic theory for the swelling and deformation behaviors of articular cartilage.
J Biomech Eng
. August 1991;113(3):245-258.
1990
McDevitt CA, Webber RJ. The ultrastructure and biochemistry of meniscal cartilage.
Clin Orthop Relat Res
. March 1990;252:8-18.
2004
Sweigart MA, Zhu CF, Burt DM, deHoll PD, Agrawal CM, Clanton TO, Athanasiou KA. Intraspecies and interspecies comparison of the compressive properties of the medial meniscus.
Ann Biomed Eng
. November 2004;32(11):1569-1579.
2005
Wilson W, van Donkelaar CC, van Rietbergen B, Huiskes R. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
J Biomech
. June 2005;38(6):1195-1204.
2001
DiSilvestro MR, Suh J-KF. A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression.
J Biomech
. April 2001;34(4):519-525.
2002
Korhonen RK, Laasanen MS, Töyräs J, Rieppo J, Hirvonen J, Helminen HJ, Jurvelin JS. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation.
J Biomech
. July 2002;35(7):903-909.
2003
Korhonen RK, Laasanen MS, Töyräs J, Lappalainen R, Helminen HJ, Jurvelin JS. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage.
J Biomech
. September 2003;36(9):1373-1379.
1968
Maroudas A. Physicochemical properties of cartilage in the light of ion exchange theory.
Biophys J
. May 1968;8(5):575-595.
1997
Atkinson TS, Haut RC, Altiero NJ. A poroelastic model that predicts some phenomenological responses of ligaments and tendons.
J Biomech Eng
. August 1997;119(4):400-405.
1980
Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments.
J Biomech Eng
. February 1980;102(1):73-84.
1998
Pioletti DP., Rakotomanana LR, Benvenuti J-F, Leyvraz P-F. Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons.
J Biomech
. August 1998;31(8):753-757.
2005
Mow VC, Gu WY, Chen FH. Structure and function of articular cartilage and meniscus. In: Mow VC, Huiskes R, eds.
Basic Orthopaedic Biomechanics & Mechano-Biology
. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2005:181-258.
2000
Soltz MA, Ateshian GA. A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage.
J Biomech Eng
. December 2000;122(6):576-586.
1998
Messner K, Gao J. The menisci of the knee joint: anatomical and functional characteristics, and a rationale for clinical treatment.
J Anat
. August 1998;193(2):161-178.
2004
Wilson W, van Donkelaar CC, van Rietbergen B, Ito K, Huiskes R. Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study.
J Biomech
. March 2004;37(3):357-366.
2005
Woo SL-V, Lee TQ, Abramowitch SD, Gilbert TW. Structure and function of ligaments and tendons. In: Mow VC, Huiskes R, eds.
Basic Orthopaedic Biomechanics & Mechano-Biology
. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2005:301-342.
2001
Hewitt J, Guilak F, Glisson R, Vail TP. Regional material properties of the human hip joint capsule ligaments.
J Orthop Res
. May 2001;19(4):359-364.
Cited By (3)
Year
Entry
2013
Shafieyan Y.
Mechanical Stimulation of Orthopaedic Tissues: Regulation of Bone Resorption and Solute Transport Through Articular Cartilage
[PhD thesis]. McGill University; August 2013.
2017
Cobetto N.
Planification chirurgicale pour la correction 3D de la scoliose pédiatrique progressive à l'aide d'un dispositif sans fusion flexible
[PhD thesis]. École polytechnique de Montréal; June 2017.
2022
Ojanen S.
Multiscale Imaging and Biomechanics of Articular Cartilage in an Animal Model of Osteoarthritis
[PhD thesis]. University of Eastern Finland; 2022.