The study investigates the relationship between static histomorphometry and bone strength of human lumbar vertebral bone. The ability of vertebral histomorphometry to predict vertebral bone strength was compared with that of vertebral densitometry, and also with histomorphometry and bone strength of iliac crest bone biopsies. The material comprised matched sets of second lumbar vertebrae, third lumbar vertebrae, and two iliac crest bone biopsies from each of 21 women (19–96 years) and 24 men (23–95 years). One of the iliac crest biopsies and 9-mm-thick mediolateral slices of half of each of the entire vertebral bodies (L-2) were used for histomorphometry. The other iliac crest biopsies and the L-3 were destructively tested by compression. High correlation was found between BV/TV or Tb.Sp and vertebral bone strength (|r| = 0.86 in both cases). Addition of Tb.Th significantly improved the correlation between BV/TV and bone strength, and the addition of bone space star volume significantly improved the correlation between Tb.Sp and bone strength (from |r| = 0.86 to |r| = 0.89 in both cases). Bone structure (connectivity density) was not capable of improving the prediction of bone strength of the vertebral body. The correlations between BV/TV of L-2 and bone strength of L-3 were comparable with the correlation obtained by quantitative computed tomography (QCT), peripheral QCT (pQCT), and dual-energy X-ray absorptrometry (DEXA) of L-3 and bone strength of L-3. The iliac crest was found to have low predictive power of vertebral bone strength (iliac BV/TV: r = 0.62; iliac bone strength: r = 0.67). No gender-related differences were found in any of the relationships. It was shown that trabecular bone volume BV/TV and mean trabecular plate separation Tb.Sp are good predictors of vertebral bone strength. The ability of histomorphometry to predict vertebral bone strength was comparable to that of densitometry. Bone structure assessed by connectivity density did not improve the correlation between static histomorphometric measures and vertebral bone strength. No gender-related differences were found in any of the relationships. Neither static histomorphometry nor biomechanical testing of iliac crest bone biopsies is a good predictor of vertebral bone strength.