Medical imaging technologies have allowed for in vivo exploration and evaluation of the human musculoskeletal system. Three-dimensional bone models generated using image-segmentation techniques provide a means to optimize individualized orthopedic surgical procedures using engineering analyses. However, many of the current segmentation techniques are not clinically practical due to the required time and human intervention. As a proof of concept, we demonstrate the use of an expectation maximization (EM) algorithm to segment the hand phalanx bones, and hypothesize that this semi-automated technique will improve the efficiency while providing similar definitions as compared to a manual rater. Our results show a relative overlap of the proximal, middle, and distal phalanx bones of 0.83, 0.79, and 0.72 for the EM technique when compared to validated manual segmentations. The EM segmentations were also compared to 3D surface scans of the cadaveric specimens, which resulted in distance maps showing an average distance for the proximal, middle, and distal phalanx bones of 0.45, 0.46, and 0.51 mm, respectively. The EM segmentation improved on the segmentation speed of the manual techniques by a factor of eight. Overall, the manual segmentations had greater relative overlap metric values, which suggests that the manual segmentations are a better fit to the actual surface of the bone. As shown by the comparison to the bone surface scans, the EM technique provides a similar representation of the anatomic structure and offers an increase in efficiency that could help to reduce the time needed for defining anatomical structures from CT scans.
Keywords:
3D Segmentation; bone; hand; computed tomography; artificial neural network