A methodology using finite element (FE) modelling and simulation with a property-based model (PBM) is presented. A generic 3-D FE model of a seat structure with a three-point seat-integrated safety belt configuration was established. A 50th percentile Hybrid III FE dummy model was used as occupant. Metamodelling techniques were used in optimisation calculations performed in two steps. Step 1: Six separate optimisations minimising biomechanical responses of the FE dummy model. Step 2: Four separate optimisations with different start values of the design variables, with the total mass of the seat structure as objective function and with the minimised biomechanical responses from Step 1 as constraint values. Six design variables were used in both Step 1 and Step 2. The four optimisations performed in Step 2 generated four different results of the total mass. Thus, different local minima were found instead of one single global minimum. The presented methodology with a PBM may be used in a concept design phase. Some issues concerning the FE model suggest further improvement.
Keywords:
finite element (FE) models; FE analysis; metamodelling; simulation; optimisation; biomechanics