This study was aimed at the definition of a constitutive formulation of ankle ligaments and of a procedure for the constitutive parameters evaluation, for the biomechanical analysis by means of numerical models. To interpret the typical features of ligaments mechanical response, as anisotropic configuration, geometric non-linearity, non-linear elasticity and time-dependent behaviour, a specific fibre-reinforced visco-hyperelastic model is provided. The identification of constitutive parameters is performed by a stochastic–deterministic procedure that minimises the discrepancy between experimental and computational results. A preliminary evaluation of parameters is performed by analytical models in order to define reference values. Afterwards, solid models are developed to consider the complex histo-morphometric configuration of samples as a basis for the definition of numerical models. The results obtained are adopted for upgrading parameter values by comparison with specific mechanical tests. Assuming the new parameters set, the final numerical results are compared with the overall set of experimental data, to assess the reliability and efficacy of the analysis developed for the interpretation of the mechanical response of ankle ligaments.
Keywords:
ankle ligaments; constitutive model; viscoelasticity; constitutive parameters; numerical analysis