Void growth and ductile failure in the nonuniform multiaxial stress fields of notched bars are studied numerically and experimentally. U-notched bars with different notch acuities are made from partially consolidated and sintered iron powder compacts with various residual porosities. The materials are modelled using an elastic-viscoplastic constitutive relation that accounts for strength degradation resulting from the growth of microvoids. The matrix stress-strain relation and the initial void volume fractions used in the calculations are determined experimentally. The remaining parameters in the constitutive equations are evaluated from micromechanical models. Comparisons of the calculations with experimental results indicate that the constitutive model can provide good estimates of the evolution of the void volume fraction and of the strength reduction induced by void growth under a variety of nonuniform stress histories.