Nanomaterials have been shown to be useful for many applications. The characterization of nanomaterials is a crucial step in understanding how to control their performance to tailor their properties for desired applications. In this thesis, several nanomaterials were studied using various methods, in an effort to characterize their properties. In the first chapter, the initial growth steps of nanometer thick polyelectrolyte film, grown layer-by-layer, were studied using Kelvin Probe Force Microscopy. The initially small domains grew with each added layer. Surface potential contrast enabled the visualization of these domains far beyond the point where no topographical variation was visible. In the second and third chapters, the potential of using collapsed-polymer nanoparticles as a carrier platform for active chemicals was studied using dye molecules as probes. Two methods were implemented, spectroscopy and isothermal titration calorimetry. Following the measurements, a binding model was proposed, which also provided thermodynamic quantification of the binding process. In the fourth chapter, an atomic force microscope probe holder was custom designed and built to enable characterization of the probes using scanning electron microscopy in an effort to facilitate specific identification of composite collapsed-polymer nanoparticles using tip-enhanced Raman Spectroscopy. In the fifth chapter, an ultra high vacuum gas dosing attachment was custom designed and built to enable a study of self-assembly of organic molecules on silicon surface. Pulse dosing was found to affect the self-assembled pattern on the surface. In the final chapter, the surface halogenation of copper surfaces was studied using a scanning tunneling microscope. The reaction was induced by an electron pulse. The scattered halogens, dissociated from the initial molecule, provided information regarding the reaction dynamics of the process.