Slips and falls are a serious occupational and health problem. Insufficient friction between a shoe and flooring, quantified by the coefficient of friction (COF), increases the likelihood of slips and falls. Moreover, shoe’s slip-resistant properties change over its lifetime due to wear. This dissertation applies physics-based computational finite element modeling techniques to predict shoe-floor-contaminant friction. Computational models that simulate COF due to hysteresis are developed using multiscale methods. These models are used to assess the effects of shoe design factors and biomechanical parameters of human gait on the predicted COF. To address a gap in the literature regarding models that simulate shoe wear progression, this dissertation develops and validates an innovative finite element modeling process utilizing Archard’s law that predicts shoe wear. Models introduced in this dissertation not only increase the understanding of slips and falls but also offer a valuable tool that can be used in designing slip-resistant and durable shoes in order to achieve the ultimate goal of reducing slip and fall injuries.