This study proposes a data-driven model for prediction of the energy consumption of fleet vehicles in various missions, by characterization as the linear combination of a small set of exemplar travel segments.
The model was constructed with reference to a heterogenous study group of 29 light municipal fleet vehicles, each performing a single mission, and each equipped with a commercial OBD2/GPS logger. The logger data was cleaned and segmented into 3-minute periods, each with 10 derived kinetic features and a power feature. These segments were used to define three essential model components as follows:
The predictions were then summed for each whole-study mission profile, and compared to the logger-derived estimate of actual energy consumption, exhibiting a mean absolute error of 9.4%. To show the technique's predictive value, this was compared to prediction with published L/100km figures, which had an error of 22%. To show the level of avoidable error, it was compared with an LGBM direct regression model (distinct from the LGBM classifier) which reduced prediction error to 3.7%.