Computational methods represent a powerful tool to explore biophysical phenomena occurring at small scales and hence difficult to observe through experimental setups. In detail, they can provide a support to mechanobiology, with the aim of understanding the behavior of living cells interacting with the surrounding environment. To this end, lattice models can provide a simulation framework that is highly reliable and easy to implement, even for simulations involving large deformations and topological changes during time evolution. In this review article, elastic network models for studying biological molecules are described, several lattice spring models for investigating cell behaviors are discussed, and the adoption of lattice beam models for biomimetic structures design is presented. The lattice modelling approaches could be regarded as a valuable option to conduct in-silico experiments and consolidate the emergent mechanobiology research field.
Keywords:
Lattice model; Elastic network model; Lattice spring model; Lattice beam model; Simulation