The comparison, evaluation, and optimization of new techniques, models, or algorithms often require the use of realistic deformable test phantoms. The purpose of this paper is to present a multilayer deformable test specimen mimicking an atherosclerotic coronary artery, suitable for mechanical testing and intravascular imaging. Mock arteries were constructed in three phases using two molds: building a first layer of polyvinyl alcohol (PVA) cryogel, adding a lipid pool and building a second layer of PVA cryogel. To illustrate the deformation of the mock arteries, one has been placed in a custom-made bath, axially stretched then inflated while acquiring intravascular ultrasound (IVUS) images. The resulting specimen presents a progressing lumen narrowing of 25% in cross-sectional area at the peak and a lipid pool. The average inner gel layer is about 0.4 mm thick and the outer about 0.6 mm. The dimensions are of the same order as clinical observations, the first gel layer mimicking the intima-media and the second layer the adventitia. In the sequence of IVUS images, the different components of the mock artery are visible and differentiable. The variation in diameter of the segmented contours is presented for a specific specimen subjected to intraluminal pressure. This double-layer stenotic mock artery is approximately the size of a human coronary artery, has a lipid inclusion, can withstand relative large deformation, suitable for (intravascular) ultrasound imaging, and has customizable geometry and wall material parameters.
Keywords:
mock artery; PVA cryogel; vessel pressurization; IVUS