Dynamic anthropomorphic heart phantoms are a developing technology which offer a methodology for optimizing current computed tomography coronary angiography techniques. This work focuses on the development of a myocardial tissue analogue material that can be utilized as a synthetic heart for Toronto General Hospitals(TGH) current dynamic phantom. First, the mechanical properties of myocardial tissue are studied to determine the static (youngâ s modulus) and viscoelastic (storage/loss modulus, tan delta) properties of the tissue. A dioctyl phthalate and poly(vinyl) chloride material is then developed which mimics the obtained properties and the computed tomography(CT) attenuation of myocardium. The material is then utilized to create a heart/coronary artery model which can be integrated with the phantom in a cardiac CT simulation scan. Through this study it is seen that the phantom provides: a visual simulation to myocardium, motion profiles of the coronary arteries and hearts, and can be used as a plaque analysis tool.