Areas of large bone loss are typically healed using autologous bone grafts, seen as the gold standard of care. These materials have a complication rate of 10–40% during harvesting and are limited by the quantity available; therefore the use of 3D printed polymer scaffolds as bone graft alternatives are proposed. Polypyrrole (PPy) is a biocompatible electroactive polymer that has metal-like electrical properties that can be harnessed to hold and release charged drug molecules, triggered by a change in pH. pH fluctuations are seen inside the human body in areas of bone regrowth, which would act as the triggering mechanism for drug release from PPy. PPy nanoparticles were incorporated into hydrogel resins, capable of being 3D printed using stereolithography techniques using riboflavin as a natural photoinitiator. Polymers were tested for drug delivery capabilities, cell adhesion, and biocompatibility to ensure proper function. These composite polymers were successful as a potential material for synthetic bone grafts.
Keywords:
3D printing; smart polymers; polypyrrole; drug delivery; bone regeneration