Armour steels have long been used for ballistic performance application purposes as they provide high hardness, toughness, and strength to resist penetration. However, literature lacks a complete understanding of failure mode analysis under various stress-loading conditions. This thesis explores the microstructure and evolution of Armox 500T as well as the correlated stress-strain data to characterize and gain a deeper understanding of its behaviour under compression, tension, and torsion with temperatures ranging from 0°C - 400°C. Results indicate that performance was increased in high strain rate compression at elevated temperatures up to 200°C, withstanding 2.0% more impact momentum and 3.7% higher toughness than room temperature samples. Temperatures above 200°C showed compromised microstructural properties and decreased performance. At 400°C high strain rate compression, the samples fractured at lower impact momentum and displayed increased brittleness and microhardness. In a reduced temperature of 0°C, low strain rate tensile test conditions decreased toughness by 11.8%.