Full-thickness articular cartilage defects rarely heal spontaneously. Some patients may not have clinically significant problems from chondral defects, but most eventually have degenerative changes. Techniques to treat chondral defects include abrasion, drilling, autografts, allografts, and cell transplantation. The senior author (JRS) developed the microfracture technique to enhance chondral resurfacing by providing a suitable environment for new tissue formation and taking advantage of the body’s own healing potential. Microfracture has been done in more than 1800 patients. Specially designed awls are used to make multiple perforations, or microfractures, into the subchondral bone plate. Perforations are made as close together as possible, but not so close that one breaks into another. They usually are approximately 3 to 4 mm apart. The integrity of the subchondral bone plate must be maintained. The released marrow elements (including mesenchymal stem cells, growth factors, and other healing proteins) form a surgically induced super clot that provides an enriched environment for new tissue formation. The rehabilitation program is crucial to optimize the results of the surgery. It promotes the ideal physical environment for the marrow mesenchymal stem cells to differentiate into articular cartilagelike cells, ultimately leading to development of a durable repair cartilage that fills the original defect.