Characteristics of turbulent premixed flames were investigated experimentally. The investigations were performed using Mie scattering, Particle Image Velocimetry, Rayleigh scattering, and broad-band luminosity imaging techniques. Methane-air flames associated with a relatively wide range of turbulence intensities, fuel-air equivalence ratios, and mean bulk flow velocities were investigated. For a relatively moderate value of turbulence intensity, a new concept is introduced and utilized to provide a detailed description associated with interaction of turbulent flow and flame front. The concept pertains to reactants velocity estimated at the vicinity of the flame front and is referred to as the edge velocity. Specifically, it is shown that fluctuations of the flame front position are induced by fluctuations of the edge velocity. For a relatively wide range of turbulence intensity, several characteristics of turbulent premixed flames, namely, front topology, brush thickness, surface density, and consumption speeds are investigated. For the first time, several flame front structures are identified and studied. It is shown that, due to formation of these front structures, the regime of turbulent premixed combustion transitions from the regime of counter-gradient diffusion to that of the gradient diffusion. In addition to these, a comprehensive study is performed to investigate influence of flame configuration on several flame front characteristics. It is obtained that, although changing the flame configuration influences several flame characteristics, the trends associated with the effects of governing parameters on the characteristics are nearly independent of the flame configuration.