Local melting and tool slippage during friction stir spot welding of different aluminum alloys is examined using a combination of detailed microscopy and temperature measurement. It has been widely accepted that friction stir welding is a solid-state process and does not involve melting. The present research indicates that local melting is an inherent feature when Al 7075 and Al 2024 alloys are spot welded, and produces tool slippage at the tool contact interface. In contrast, intermetallic particles contained in the Al 5754 and Al 6061 as-received materials do not melt and a no-slip condition is maintained.
A combination of data acquisition of key welding parameters (axial force, torque and tool displacement), high-speed imaging, temperature measurement and metallography are employed to study the tool penetration stage and the subsequent dwell period during spot welding. A methodology is developed for reliably determining the stir zone temperature using thermocouples embedded within the tool itself. Tool slippage is investigated by determining the strain rate in stir zone material adjacent to the rotating tool. The strain rate is estimated by substituting stir zone temperature and subgrain size measurements into the Zener-Hollomon equation.
Tool penetration early in the friction stir spot welding process can be explained as a progression of wear events from mild (delamination) wear, through to severe wear, and finally to melt wear in the material located immediately under the tip of the rotating pin.
The stir zone peak temperature during welding is limited by either the solidus temperature of the alloy in question, or by local melting of intermetallic particles contained in the base material such as Al 7075 or Al 2024 alloys. Melted films dissolve rapidly in the high temperature stir zone, and as the weld cools to room temperature.
Metallographic evidence confirming local melting and cracking is observed in Al 7075 and Al 2024 alloy friction stir spot welds made using a combination of rapid quenching, a high plunge rate and an extremely short dwell time setting. When slower plunge rates and longer dwell times are applied the dissolution of the melted films removes evidence of their occurrence.