The mechanical behavior of graphene oxide is length scale dependent: orders of magnitude different between the bulk forms and monolayer counterparts. Understanding the underlying mechanisms plays a significant role in their versatile application. A systematic multiscale mechanical study from monolayer to multilayer, including the interactions between layers of GO, can provide fundamental support for material engineering. In this thesis, an experimental coupled with simulation approach was used to study the multiscale mechanics of graphene oxide (GO) and the methods developed for GO study are proved to be applicable also to mechanical study of graphene based composites.
GO is a layered nanomaterial comprised of hierarchical units whose characteristic dimension lies between monolayer GO (0.7 nm 1.2 nm) and bulk GO papers (≥ 1 µm). Mechanical behaviors of monolayer GO and GO nanosheets (10 nm- 100 nm) were comprehensively studied in this work. Monolayer GO was measured to have an average strength of 24.7 GPa,, orders of magnitude higher than previously reported values for GO paper and approximately 50% of the 2D intrinsic strength of pristine graphene. The huge discrepancy between the strength of monolayer GO and that of bulk GO paper motivated the study of GO at the intermediate length scale (GO nanosheets). Experimental results showed that GO nanosheets possess high strength in the gigapascal range. Molecular Dynamic simulations showed that the transition in the failure behavior from interplanar fracture to intraplanar fracture was responsible for the huge strength discrepancy between nanometer scale GO and bulk GO papers. Additionally, the interfacial shear strength between GO layers was found to be a key contributing factor to the distinct mechanical behavior among hierarchical units of GO. The understanding of the multiscale mechanics of GO is transferrable in heterogeneous layered nanomaterials, such as graphene-metal oxide based anode materials in Li-ion batteries. The novel methods developed in this work to study GO multilayered structures were also applied to study the mechanics of graphene-TiO₂ composites. It was found that a critical thickness range of TiO₂ deposition on graphene is required for the observed stiffness enhancement effect of graphene to influence the mechanical behavior of the composite.